22 research outputs found

    CE14005

    Get PDF
    Acoustic surveys on blue whiting (Micromesistius poutassou) spawning aggregations in the north east Atlantic have been carried out by the Institute of Marine Research (IMR) Norway since the early 1970s. The 2014 survey was part of an international collaborative survey using the vessels RV Celtic Explorer (Ireland), RV Fridtjof Nansen (Russia), RV Tridens (Netherlands) and the RV Magnus Heinason (Faroes). The total combined area coverage extended from the Faroe Islands in the north (62° N) to south of Ireland (52° N), with east -west extension from 4°-19° W. International survey participants meet shortly after the survey to present data and produce a combined relative abundance stock estimate and report.The combined survey report is presented annually at the WGIPS meeting held in January. The information presented here relates specifically to the Irish survey

    Friend or foe:Risso’s dolphins eavesdrop on conspecific sounds to induce or avoid intra-specific interaction

    Get PDF
    The detection and use of emitters’ signals by unintended receivers, i.e., eavesdropping, represents an important and often low-cost way for animals to gather information from their environment. Acoustic eavesdropping can be a key driver in mediating intra- and interspecific interactions (e.g., cooperation, predator–prey systems), specifically in species such as cetaceans that use sound as a primary sensory modality. While most cetacean species produce context-specific sounds, little is known about the use of those sounds by potential conspecific eavesdroppers. We experimentally tested the hypothesis that a social cetacean, Risso’s dolphin (Grampus griseus), is able to gather biologically relevant information by eavesdropping on conspecific sounds. We conducted playback experiments on free-ranging dolphins using three context-specific sounds stimuli and monitored their horizontal movement using visual or airborne focal follow observations. We broadcasted natural sequences of conspecific foraging sounds potentially providing an attractive dinner bell signal (n = 7), male social sounds simulating a risk of forthcoming agonistic interaction (n = 7) and female-calf social sounds representing no particularly threatening context (n = 7). We developed a quantitative movement response score and tested whether animals changed their direction of horizontal movement towards or away from the playback source. Dolphins approached the foraging and the social female-calf sounds whereas they avoided the social male sounds. Hence, by acoustically eavesdropping on conspecifics, dolphins can discriminate between social and behavioural contexts and anticipate potential threatening or beneficial situations. Eavesdropping and the ensuing classification of ‘friend or foe’ can thus shape intra-specific social interactions in cetaceans

    Evidence for discrimination between feeding sounds of familiar fish and unfamiliar mammal-eating killer whale ecotypes by long-finned pilot whales

    Get PDF
    Research funding was provided by the US Office of Naval Research, the DGA/TN (France), the UK Natural Environmental Research Council, and the Ministries of Defence of Norway and The Netherlands. PLT acknowledges funding received from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland). MASTS is funded by the Scottish Funding Council (Grant reference HR09011) and contributing institutions. CC acknowledges statistical support provided by the Multi-study OCean acoustics Human effects Analysis (MOCHA) project funded by the United States Office of Naval Research (Grant N00014-12-1-0204).Killer whales (KW) may be predators or competitors of other cetaceans. Since their foraging behavior and acoustics differ among populations ('ecotypes'), we hypothesized that other cetaceans can eavesdrop on KW sounds and adjust their behavior according to the KW ecotype. We performed playback experiments on long-finned pilot whales (Globicephala melas) in Norway using familiar fish-eating KW sounds (fKW) simulating a sympatric population that might compete for foraging areas, unfamiliar mammal-eating KW sounds (mKW) simulating a potential predator threat, and two control sounds. We assessed behavioral responses using animal-borne multi-sensor tags and surface visual observations. Pilot whales barely changed behavior to a broadband noise (CTRL-), whereas they were attracted and exhibited spyhops to fKW, mKW, and to a repeated-tonal upsweep signal (CTRL+). Whales never stopped nor started feeding in response to fKW, whereas they reduced or stopped foraging to mKW and CTRL+. Moreover, pilot whales joined other subgroups in response to fKW and CTRL+, whereas they tightened individual spacing within group and reduced time at surface in response to mKW. Typical active intimidation behavior displayed to fKW might be an antipredator strategy to a known low-risk ecotype or alternatively a way of securing the habitat exploited by a heterospecific sympatric population. Cessation of feeding and more cohesive approach to mKW playbacks might reflect an antipredator behavior towards an unknown KW ecotype of potentially higher risk. We conclude that pilot whales are able to acoustically discriminate between familiar and unfamiliar KW ecotypes, enabling them to adjust their behavior according to the perceived disturbance type.PostprintPeer reviewe

    Evidence for distinct coastal and offshore communities of bottlenose dolphins in the north east Atlantic.

    Get PDF
    Bottlenose dolphin stock structure in the northeast Atlantic remains poorly understood. However, fine scale photo-id data have shown that populations can comprise multiple overlapping social communities. These social communities form structural elements of bottlenose dolphin (Tursiops truncatus) [corrected] populations, reflecting specific ecological and behavioural adaptations to local habitats. We investigated the social structure of bottlenose dolphins in the waters of northwest Ireland and present evidence for distinct inshore and offshore social communities. Individuals of the inshore community had a coastal distribution restricted to waters within 3 km from shore. These animals exhibited a cohesive, fission-fusion social organisation, with repeated resightings within the research area, within a larger coastal home range. The offshore community comprised one or more distinct groups, found significantly further offshore (>4 km) than the inshore animals. In addition, dorsal fin scarring patterns differed significantly between inshore and offshore communities with individuals of the offshore community having more distinctly marked dorsal fins. Specifically, almost half of the individuals in the offshore community (48%) had characteristic stereotyped damage to the tip of the dorsal fin, rarely recorded in the inshore community (7%). We propose that this characteristic is likely due to interactions with pelagic fisheries. Social segregation and scarring differences found here indicate that the distinct communities are likely to be spatially and behaviourally segregated. Together with recent genetic evidence of distinct offshore and coastal population structures, this provides evidence for bottlenose dolphin inshore/offshore community differentiation in the northeast Atlantic. We recommend that social communities should be considered as fundamental units for the management and conservation of bottlenose dolphins and their habitat specialisations

    Scaling of swimming performance in baleen whales

    Get PDF
    The scale dependence of locomotor factors has long been studied in comparative biomechanics, but remains poorly understood for animals at the upper extremes of body size. Rorqual baleen whales include the largest animals, but we lack basic kinematic data about their movements and behavior below the ocean surface. Here, we combined morphometrics from aerial drone photogrammetry, whale-borne inertial sensing tag data and hydrodynamic modeling to study the locomotion of five rorqual species. We quantified changes in tail oscillatory frequency and cruising speed for individual whales spanning a threefold variation in body length, corresponding to an order of magnitude variation in estimated body mass. Our results showed that oscillatory frequency decreases with body length (proportional to length(-0.5)(3)) while cruising speed remains roughly invariant (proportional to length(0.08)) at 2 m s(-1). We compared these measured results for oscillatory frequency against simplified models of an oscillating cantilever beam (proportional to length(-1)) and an optimized oscillating Strouhal vortex generator (proportional to length(-1)). The difference between our length-scaling exponent and the simplified models suggests that animals are often swimming non-optimally in order to feed or perform other routine behaviors. Cruising speed aligned more closely with an estimate of the optimal speed required to minimize the energetic cost of swimming (proportional to length(-1)). Our results are among the first to elucidate the relationships between both oscillatory frequency and cruising speed and body size for free-swimming animals at the largest scale

    Predator-scale spatial analysis of intra-patch prey distribution reveals the energetic drivers of rorqual whale super-group formation

    Get PDF
    Animals are distributed relative to the resources they rely upon, often scaling in abundance relative to available resources. Yet, in heterogeneously distributed environments, describing resource availability at relevant spatial scales remains a challenge in ecology, inhibiting understanding of predator distribution and foraging decisions. We investigated the foraging behaviour of two species of rorqual whales within spatially limited and numerically extraordinary super-aggregations in two oceans. We additionally described the lognormal distribution of prey data at species-specific spatial scales that matched the predator's unique lunge-feeding strategy. Here we show that both humpback whales off South Africa's west coast and blue whales off the US west coast perform more lunges per unit time within these aggregations than when foraging individually, and that the biomass within gulp-sized parcels was on average higher and more tightly distributed within super-group-associated prey patches, facilitating greater energy intake per feeding event as well as increased feeding rates. Prey analysis at predator-specific spatial scales revealed a stronger association of super-groups with patches containing relatively high geometric mean biomass and low geometric standard deviations than with arithmetic mean biomass, suggesting that the foraging decisions of rorqual whales may be more influenced by the distribution of high-biomass portions of a patch than total biomass. The hierarchical distribution of prey in spatially restricted, temporally transient, super-group-associated patches demonstrated high biomass and less variable distributions that facilitated what are likely near-minimum intervals between feeding events. Combining increased biomass with increased foraging rates implied that overall intake rates of whales foraging within super-groups were approximately double those of whales foraging in other environments. Locating large, high-quality prey patches via the detection of aggregation hotspots may be an important aspect of rorqual whale foraging, one that may have been suppressed when population sizes were anthropogenically reduced in the 20th century to critical lows.Office of Naval Research, Stanford University, South African Department of the Environment, Forestry and Fisheries National Science Foundation.http://wileyonlinelibrary.com/journal/fec2022-01-25hj2021Zoology and Entomolog

    Scaling of maneuvering performance in baleen whales: larger whales outperform expectations

    Get PDF
    Despite their enormous size, whales make their living as voracious predators. To catch their much smaller, more maneuverable prey, they have developed several unique locomotor strategies that require high energetic input, high mechanical power output and a surprising degree of agility. To better understand how body size affects maneuverability at the largest scale, we used bio-logging data, aerial photogrammetry and a high-throughput approach to quantify the maneuvering performance of seven species of free-swimming baleen whale. We found that as body size increases, absolute maneuvering performance decreases: larger whales use lower accelerations and perform slower pitch-changes, rolls and turns than smaller species. We also found that baleen whales exhibit positive allometry of maneuvering performance: relative to their body size, larger whales use higher accelerations, and perform faster pitch-changes, rolls and certain types of turns than smaller species. However, not all maneuvers were impacted by body size in the same way, and we found that larger whales behaviorally adjust for their decreased agility by using turns that they can perform more effectively. The positive allometry of maneuvering performance suggests that large whales have compensated for their increased body size by evolving more effective control surfaces and by preferentially selecting maneuvers that play to their strengths.We thank the crews of many research vessels including the R/V John Martin, R/V Fluke, ARSV Laurence M. Gould, R/V Sanna, M/V Antonie, M/V Northern Song, the Cascadia Research Collective and the Shallow Marine Surveys Group; in particular, we thank John Douglas, Andrew Bell, Shaun Tomlinson, Steve Cartwright, Tony D'Aoust, Dennis Rogers, Kelly Newton, Heather Riley, Gina Rousa and Mark Rousa. We also thank Brandon L. Southall, Alison K. Stimpert and Stacy L. DeRuiter for their role in collecting data as part of the SOCAL-BRS project. We thank Matt S. Savoca, Julian Dale and Danuta M. Wisniewska for assistance with data collection. Finally, we thank John H. Kennedy, Michael A. Thompson and the NSF Office of Polar Programs.Ye

    Chi square pair-wise comparison of the proportion of permanently marked individuals for social networks A-E.

    No full text
    <p>Chi square pair-wise comparison of the proportion of permanently marked individuals for social networks A-E.</p

    The number of sightings of individuals comprising network A and network B-E.

    No full text
    <p>The number of sightings of individuals comprising network A and network B-E.</p
    corecore